
Real-time Adaptive Use of Surface Tessellation & Subdivision

Background
Surface tessellation has been used in graphics engines
for an extremely long time. It is generally used to boost
the �delity of surfaces on higher-power machines. There
are 2 main methods of tessellating in current graphics
environments: “Loop” and “Catmull-Clark”. These
methods are both used throughout the industry, with
“Loop” being favoured by graphics rendering engines due
to it working well with triangle-based meshes and
“Catmull-Clark” being favoured for modelling due to it
using quad-based meshes as shown in Figure 1 and 2
respectively.

Motivations
The current tessellation in rendering engines tends to be
done in a static manner. The tessellation value set by the
user tends to only a�ect the max tessellation done by
the graphics system when close to the user. However,
doing this means losing e�ciency in low detail
environments as the user will wish to keep stable
framerates in higher detail environments.

My objectives are to:
• Develop a rendering pipeline within a current highly

used rendering engine i.e. Direct3D, Vulkan etc.
• Create and implement an optimised tessellation

system that changes the tessellation of object meshes
in real-time to allow for greater �delity whilst keeping
performance.

• Potentially optimise this system to work on the GPU
instead of strictly CPU.

Doing these should hopefully �ll a gap in rendering
development to allow for more �exible use of surface
tessellation and subdivision.

MethodologyDiscussion
A literature review was used to understand the current
ways that tessellation is used in rendering engines as
well as potential solutions to some of their �aws. The
review focused on two section; tessellation techniques
and subdivision techniques.
The review shows that most of the work on surface
subdivision being done is to combine the current
subdivision schemes to allow for a more varied selection
of models to be used as shown in Figure 3.

Figure 2: Catmull-Clark Surface
Subdivision (Romainbehar, 2006)

Figure 1: Loop Surface Subdivision
(Fuhrmann, S. 2009

Figure 3: Output from paper on Composite Subdivisions for 3D
Quad-Triangle Meshes. (Kok-Why, S. W. Andi and Khairil Imran,
2012)

The review into the tessellation techniques show more
into optimising the tessellation system, such as using a
mesh shader pipeline and a view dependant tessellation
metric as shown in Figure 4.

Figure 4: Adaptive Tessellation Metrics from A View-dependent Adaptivity
Metric For Real Time Mesh Tessellation. (Boubekeur, A view-dependent
adaptivity metric for real time mesh tessellation, 2010)

My methodology will potentially be adapting the
“Adaptive Tessellation Matrix” from Figure 2 into a
rendering engine using the Vulkan API. I may also use the
information and knowledge from other research papers
that also work on subdivision in modern rendering
engines. However, I will not be using “Neural
Subdivision” due to the complexity of using machine
learning and my lack of hardware for the task.

I'll be using the “Agile” methodology to split the project
into the following chunks to complete the project.
Initially, I will be using the Vulkan Documentation
(Vulkan®, n.d.) to create a basic rendering engine.
I will then use this to test performance with current
tessellation and subdivision systems by taking readings
such as average frames per second, average frame times
and 1% lows.
Subsequently, I will be developing a variant of the
tessellation and subdivision systems that works in real
time and adapts based on the above-mentioned
statistics.
I’ll then test the performance of the system after these
changes have been made and conclude as to whether
this system completes its function properly.

References
• Boubekeur, T. (2010). A view-dependent adaptivity

metric for real time mesh tessellation. 2010 IEEE
International Conference on Image Processing (p. 4)

• Fuhrmann, S. (2009), Loop Surface Subdivision.
• Kok-Why, N., S. W, A., & Khairil Imran, G. (2012).

Composite subdivisions for 3D quad-triangle meshes.
2012 International Conference on Computer &
Information Science (ICCIS) (p. 4).

• Liu, H., Kim, V. G., Chaudhuri, S., Aigerman, N., &
Jacobson, A. (2020). Neural subdivision. ACM
Transaction on Graphics, Vol. 39, No. 4, 16.

• Romainbehar, (2006) Catmull-Clark Surface
Subdivision.

• Vulkan®. (n.d.). Khronos Vulkan® Tutorial. Retrieved
from Vulkan Documentation

Neural subdivision is also being investigated by these
papers, where machine learning is used to generate the
subdivided meshes, these meshes seem to have a higher
detail than the current standard techniques as in Figure
5.

Figure 5: Neural Subdivision. (Youwei, Qingping, & Lamei, 2007)

